APANTALLAMIENTO Y CARGA NUCLEAR EFECTIVA

En el átomo cada electrón experimenta menos carga que la nuclear real, debido al blindaje o apantallamiento provocado por otros electrones. Para cada electrón en un átomo, las reglas de *Slater* proporcionan un valor para la constante de apantallamiento, representada por σ .

La carga nuclear efectiva se define como la carga nuclear real (**Z**), menos la constante de apantallamiento σ , causada por los electrones que intervienen entre el núcleo y el electrón de valencia.

$$Z_{ef} = Z - \sigma$$

Cálculo de la Zef. Reglas de Slater

- 1. Se escribe la configuración electrónica completa y se agrupan los orbitales ns y np: (1s) (2s,2p) (3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p) (5d) (5f) (6s,6p) (6d) ...
- 2. Todos los electrones de orbitales con n mayor al considerado, -los situados a la derecha- no contribuyen al apantallamiento.
- 3. Para los electrones s ó p:
 - a) Los electrones en el mismo grupo (ns, np) apantallan 0,35 unidades de carga nuclear y 0,30 para el orbital 1s.
 - b) Los electrones en los niveles **n-1** apantallan **0,85 unidades**.
 - c) Los electrones en los niveles **n-2** o inferiores apantallan completamente (**1,0 unidades**).
- 4. Para los electrones d o f:
 - a) Todos los electrones situados a la derecha del grupo (nd, nf), no contribuyen al apantallamiento.
 - b) Los electrones en el mismo (nd, nf) apantallan 0,35 unidades de carga.
 - c) Los electrones situados en los grupos a la izquierda apantallan completamente (1,0 unidades).
- 5. Para obtener la carga nuclear efectiva experimentada por un electrón dado, Restamos a la carga nuclear verdadera **Z**, la suma de las constantes de apantallamiento obtenidas al aplicar las reglas de **Slater**.

Ejemplos

Nitrógeno

Número atómico: 7 Para un electrón **2p**

Configuración electrónica: 1s² 2s² 2p³ Ordenado por nivel: (1s²) (2s² 2p³)

Constante de apantallamiento: $\sigma = 4 \cdot 0.35 + 2 \cdot 0.85 = 3.1$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 7 - 3,1 = 3,9$

Silicio

Número atómico: 14 Para un electrón **3p**

Configuración electrónica: 1s² 2s² 2p⁶ 3s² 3p² Ordenado por nivel: (1s²) (2s² 2p⁶) (3s² 3p²)

Constante de apantallamiento: $\sigma = 3 \cdot 0.35 + 8 \cdot 0.85 + 2 \cdot 1 = 9.85$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 14 - 9,85 = 4,15$

Potasio

Número atómico: 19 Para un electrón **4s**

> Configuración electrónica: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ Ordenado por nivel: (1s²) (2s² 2p⁶) (3s² 3p⁶) (4s¹)

Constante de apantallamiento: $\sigma = 8 \cdot 0.85 + 8 \cdot 1.00 + 2 \cdot 1 = 16.8$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 19 - 16.8 = 2.2$

Para un electrón 3d

Configuración electrónica: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ Ordenado por nivel: $(1s^2) (2s^2 2p^6) (3s^2 3p^6) (3d^0) (4s^1)$ Constante de apantallamiento: $\sigma = 8 \cdot 1 + 8 \cdot 1 + 2 \cdot 1 = 18$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 19 - 18 = 1,0$

Calcio

Número atómico: 20 Para un electrón **4s**

Configuración electrónica: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$ Ordenado por nivel: $(1s^2)$ $(2s^2$ $2p^6)$ $(3s^2$ $3p^6)$ $(4s^2)$

Constante de apantallamiento: $\sigma = 1 \cdot 0.35 + 8 \cdot 0.85 + 10 \cdot 1 = 17.75$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 20 - 17,75 = 2,85$

Manganeso

Número atómico: 25 Para un electrón **5d**

> Configuración electrónica: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$ Ordenado por nivel: $(1s^2)$ $(2s^2 2p^6)$ $(3s^2 3p^6)$ $(3d^5)$ $(4s^2)$ Constante de apantallamiento: $\sigma = 4 \cdot 0.35 + 18 \cdot 1 = 19.4$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 25 - 19,4 = 5,6$

Cinc

Número atómico: 30 Para un electrón **4s**

Configuración electrónica: 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 Ordenado por nivel: (1s²) (2s² 2p6) (3s² 3p6) (3d¹0) (4s²)

Constante de apantallamiento: $\sigma = 1 \cdot 0.35 + 18 \cdot 0.85 + 8 \cdot 1 + 2 \cdot 1 = 25.65$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 30 - 25,65 = 4.35$

Para un electrón 3d

Configuración electrónica: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10}$ Ordenado por nivel: $(1s^2) \ (2s^2 \ 2p^6) \ (3s^2 \ 3p^6) \ (3d^{10}) \ (4s^2)$ Constante de apantallamiento: $\sigma = 9 \cdot 0.35 + 18 \cdot 1 = 21.15$ Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 30 - 21.15 = 8.85$

Selenio

Número atómico: 34 Para un electrón **4p**

> Configuración electrónica: 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p⁴ Ordenado por nivel: (1s²) (2s² 2p6) (3s² 3p6) (3d¹0) (4s² 4p⁴)

Constante de apantallamiento: $\sigma = 5 \cdot 0.35 + 18 \cdot 0.85 + 10 \cdot 1 = 27.05$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 34 - 27,05 = 6,95$

Tungsteno (Wolframio)

Número atómico: 74 Para un electrón **6s**

Configuración electrónica: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰5p⁶ 6s² 4f¹⁴ 5d⁴

Ordenado por nivel: (1s²) (2s² 2p6) (3s² 3p6) (3d10) (4s² 4p6) (4d10) (4f14) (5s² 5p6) (5d4) (6s²)

Constante de apantallamiento: $\sigma = 1 \cdot 0.35 + 12 \cdot 0.85 + 60 \cdot 1 = 70.55$

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 74 - 70,55 = 3,45$

Plomo

Número atómico: 82 Para un electrón **6p**

Configuración electrónica: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^6\ 6s^2\ 4f^{14}\ 5d^{10}\ 6p^2$

Ordenado por nivel: $(1s^2)$ $(2s^2 2p^6)$ $(3s^2 3p^6)$ $(3d^{10})$ $(4s^2 4p^6)$ $(4d^{10})$ $(4f^{14})$ $(5s^2 5p^6)$ $(5d^{10})$ $(6s^2 6p^2)$

Constante de apantallamiento: σ = 3 · 0,35 + 18 · 0,85 + 60 · 1= 76,35

Carga nuclear efectiva: $Z_{ef} = Z - \sigma = 82 - 76,35 = 5,65$