Rendimiento teórico vs. rendimiento actual. Porcentaje de rendimiento de una reacción química.

Cuando ocurre una reacción química asumimos que todos los reactivos reaccionan y se convierten en productos, sin importar la estequiometría. Las reacciones ocurren de la forma en que las escribimos, pero por una variedad de razones las reacciones no se completan al 100%. Algunas razones pueden ser desvíos en la reorganización de los átomos (*reacciones secundarias*), presencia de contaminantes o de cantidad de energía requerida. Por lo que normalmente se forma menos producto del que cabría esperar en función de la cantidad de reactivos utilizados.

Se definen los siguientes conceptos:

Rendimiento teórico

El que se obtiene de usar la estequiometría de la reacción para calcular la cantidad de producto formado.

Rendimiento actual

Se obtiene de la medida directa de la cantidad de producto formado en la reacción.

Rendimiento de la reacción

La relación entre el rendimiento actual y el rendimiento teórico, expresado en tanto por ciento.

% Rendimiento reaccion quimica =
$$\frac{Rendimiento\ actual}{Rendimiento\ teorico} \times 100$$

Los procesos industriales están estrechamente relacionados con el cálculo del porcentaje de rendimiento de una reacción química.

PROBLEMAS

1. La producción del ácido ortofosfórico se hace según la siguiente reacción. ¿Qué masa de H₃PO₄ se producirá a partir de 50 g de P₂O₅ reaccionando con exceso de agua?

$$P_2 O_5(s) + 3 H_2 O(l) \rightarrow 2 H_3 PO_4(aq)$$

50 g exc.

La masa de H₃PO₄ teóricamente esperada:

$$50 g P_{2}O_{5} \times \frac{mol P_{2}O_{5}}{142 g P_{2}O_{5}} \times \frac{2 mol H_{3}PO_{4}}{1 mol P_{2}O_{5}} \times \frac{98 g H_{3}PO_{4}}{1 mol H_{3}PO_{4}} = 69.0 g H_{3}PO_{4}$$
Rendimiento teórico

2. Para el problema anterior, si se producen 65 g de H₃PO₄. ¿Cuál es el rendimiento de la reacción? Los 65 g de H₃PO₄ corresponderían al rendimiento actual:

% Rendimiento =
$$\frac{Rendimiento\ actual}{Rendimiento\ teórico} \times 100 = \frac{65 \, \text{g}}{69.0 \, \text{g}} \times 100 = 94 \, \text{\%}$$

3. ¿Cuál es el rendimiento de la siguiente reacción, si se producen 25 g de agua a partir de 18 g de NH₃ reaccionado con exceso de oxígeno?

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$$

18 g exc. 25 g
Rendimiento

Calculamos el rendimiento teórico:

$$18 \text{ g NH}_3 \times \frac{\text{mol NH}_3}{17 \text{ g NH}_3} \times \frac{6 \text{ mol H}_2O}{4 \text{ mol NH}_3} \times \frac{18 \text{ g H}_2O}{1 \text{ mol H}_2O} = 28.6 \text{ g H}_2O$$

El rendimiento de la reacción es:

% Rendimiento =
$$\frac{Rendimiento\ actual}{Rendimiento\ teórico} \times 100 = \frac{25 \text{ g}}{28.6 \text{ g}} \times 100 = 87.4 \text{ %}$$

4. En la reacción anterior 14.8 g de NH₃ reaccionan con 36.1 g de O₂ gas. ¿Cuál es el rendimiento si se producen 15.3 g de H₂O?

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$$

14.8 g 36.1 g 15.3 g
Rendimiento

Para buscar el rendimiento teórico de la formación del agua hay que encontrar, en primer lugar, el reactivo limitante.

$$14.8 \text{ g NH}_{3} \times \frac{\text{mol NH}_{3}}{17 \text{ g NH}_{3}} \times \frac{6 \text{ mol H}_{2}O}{4 \text{ mol NH}_{3}} = 1.31 \text{ mol H}_{2}O$$

$$36.1 \, g \, \mathcal{O}_2 \, \times \, \frac{mol \, \mathcal{O}_2}{32 \, g \, \mathcal{O}_2} \, \times \, \frac{6 \, mol \, H_2 O}{7 \, mol \, \mathcal{O}_2} \, = \, 0.967 \, mol \, H_2 O$$

Reactivo limitante

Hacemos el cálculo del rendimiento teórico respecto del reactivo limitante:

$$0.967 \, mol \, H_2O \times \frac{18 \, g \, H_2O}{1 \, mol \, H_2O} = 17.4 \, g \, H_2O$$

Rendimiento teórico

El rendimiento de la reacción es:

% Rendimiento =
$$\frac{Rendimiento \ actual}{Rendimiento \ teórico} \times 100 = \frac{15.3 \ g}{17.4 \ g} \times 100 = 87.9 \ \%$$

msm página 2 de 3

BIBLIOGRAFÍA

THE CRASH CHEMISTRY ACADEMY

Video: Percent Yield Tutorial Explained + Practice Problems. mp4 https://www.youtube.com/watch?v=L7NEeVY4-P0

msm página **3** de **3**