FORMAS DE EXPRESAR LA RELACIÓN ENTRE DOS MAGNITUDES

MAGNITUD

Es todo aquello que se puede medir y, por tanto, expresar mediante una cantidad y una unidad. Por ejemplo: masa, longitud, tiempo, volumen, etc.

FUNCIÓN

Cuando tratamos de expresar la relación que existe entre los datos obtenidos para dos magnitudes, lo hemos de hacer mediante una función. Una función es una relación o correspondencia establecida entre dos magnitudes. Una de ellas adopta el papel de *variable independiente* y la otra de *variable dependiente*. Esa relación se puede establecer de diversas formas:

- En lenguaje ordinario (castellano).
- 2. Mediante tablas.
- 3. Mediante gráficas.
- 4. Mediante ecuaciones o fórmulas.

LENGUAJE CASTELLANO

En lenguaje castellano la relación se expresa de la siguiente manera:

¿Cómo varía la magnitud A con respecto a la magnitud B?. O expresado de otra manera: ¿Cómo dependen los valores que toma la magnitud A de los valores que toma la magnitud B?

Cuando hacemos esa pregunta, estamos asociando el papel de variable dependiente (VD) a la magnitud A y el papel de variable independiente (VI) a la magnitud B.

Ejemplo 1

¿Cómo varía la temperatura ambiente con las horas del día (tiempo)?

Aquí la temperatura tendría el papel de *variable dependiente* y el tiempo de *variable independiente*.

Ejemplo 2:

¿Cómo varía la presión con la altura?

Aquí la presión tendría el papel de variable dependiente y la altura de variable independiente.

TABLAS

Cuando la relación se da por tablas se escribe siempre así:

Variable independiente	Variable dependiente

Relación entre magnitudes 3º ESO

Para el primer caso sería:

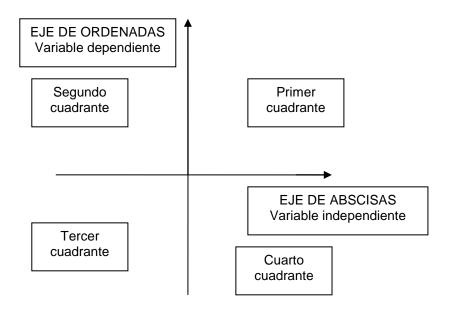
Tiempo (horas)	Temperatura (°C)

Para el segundo caso sería:

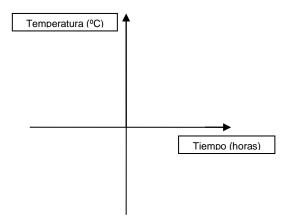
Altura (Km.)	Presión (atm)

GRÁFICAS

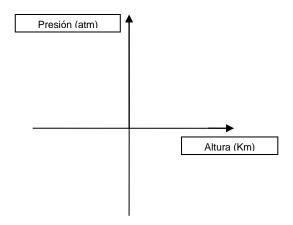
Cuando la relación se da por gráficas, hay que expresarla mediante un sistema de ejes coordenados:



Para el primer caso sería:



Para el segundo caso sería:



FÓRMULAS

Cuando la relación se da por fórmulas se expresa:

Variable dependiente = f (Variable independiente)

Para el primer caso:

T = f(t); T viene dado en ${}^{\circ}C$ y t en horas

Para el segundo caso:

P = f(h); P viene en atmósferas y h en km

Definición

En general, cuando no se especifica la magnitud de que se trata, se escribe x para la variable independiente e y = f(x) para la variable dependiente. Se lee "y es función (depende) de x".

Podemos definir una función matemática como una relación entre dos conjuntos de números, de modo que a cada valor del primero (x) le corresponde un único valor del segundo (y = f(x)).

×	f(x)
Entrada	Salida
Inicial	Final
DOMINIO DE	RECORRIDO
LA FUNCIÓN	DE LA FUNCIÓN

Ejemplo 1

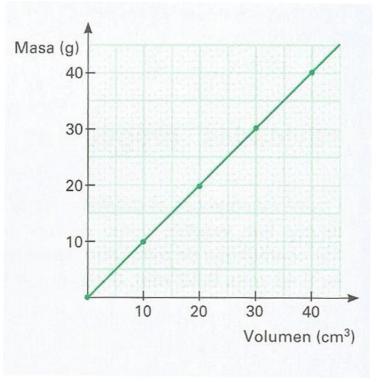
Estudiamos en el laboratorio la relación entre el volumen de agua y la masa que tiene dicho volumen. Medimos el volumen con una probeta de sensibilidad 1 cm³ y la masa con una balanza de sensibilidad 0,1 q, obteniendo estos resultados:

Volumen (cm³)	0	10	20	30	40
Masa (g)	0	9,9	19,8	30,1	40,0

Pretendemos estudiar cómo varía la masa con respecto al volumen que ocupa de agua.

$$masa = f (volumen)$$

La representación gráfica de los datos daría:



La relación que existe entre la masa y el volumen:

Volumen (cm³)	0	10	20	30	40
Masa (g)	0	9,9	19,8	30,1	40,0
Masa/Volumen (g/cm³)		1,0	1,0	1,0	1,0

La ecuación de proporcionalidad es:

$$Densidad = \frac{masa}{volumen} = 1,0 \frac{g}{cm^3}$$

Que podemos escribir:

masa = 1,0 volumen

Ejemplo 2

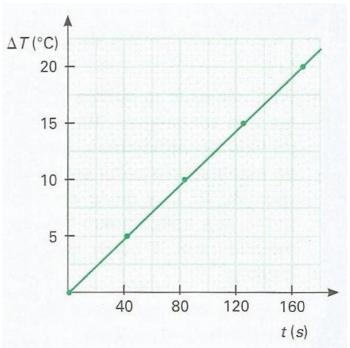
Calentamos en un recipiente cierta cantidad de agua y vamos midiendo el tiempo (t) que tarda en ir aumentando su temperatura (Δt) de cinco en cinco grados. El tiempo lo medimos con un reloj de sensibilidad ± 1 s y la variación de temperatura con un termómetro de sensibilidad ± 1 °C, obteniendo los siguientes resultados.

· · ·				125	
ΔT (°C)	0	5	10	15	20

Estudiamos el fenómeno de cómo varía la **temperatura** de una cantidad de agua con respecto al **tiempo** de calentamiento.

temperatura = f (tiempo)

La representación gráfica de los datos daría:



Para ver la relación que existe entre la diferencia de temperatura y el tiempo:

t (s)	0	42	83	125	167
ΔT (°C)	0	5	10	15	20
$\Delta T/t$ (°C/s)		0,12	0,12	0,12	0,12

La ecuación de proporcionalidad es:

$$\frac{\Delta t}{t} = 0.12 \frac{{}^{\circ}C}{s}$$

Que podemos escribir:

$$\Delta T = 0.12 t$$

Relación entre magnitudes 3º ESO

Ejemplo 3:

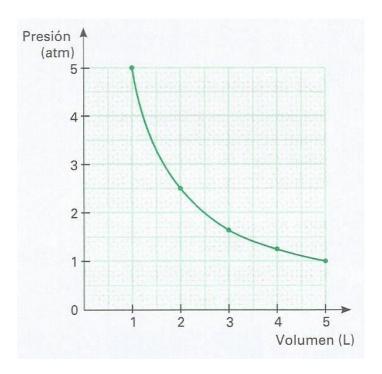
Tenemos encerrado en un émbolo cierta cantidad de gas que, inicialmente, ocupa un volumen de 5L y está ejerciendo una presión de 1 atm. Lo comprimimos lentamente de forma que la temperatura se mantiene constante y vamos tomando datos de la presión y el volumen ordenándolos en la siguiente tabla:

Volumen (L)	5	4	3	2	1
Presión (atm)	1	1,25	1,67	2,5	5

Pretendemos estudiar cómo varía **la presión** de un gas encerrado con respecto al **volumen** que ocupa:

$$presión = f (volumen)$$

La representación gráfica daría:



Para ver la relación que existe entre presión y el volumen:

Volumen (L)	5	4	3	2	1
Presión (atm)	1	1,25	1,67	2,5	5
P·V (atm L)	5	5	5	5	5

La ecuación de proporcionalidad es:

$$P \cdot V = 5$$

Ejemplo 4

La tabla de valores para los primeros 5s, para un móvil que parte del reposo y sigue una trayectoria rectilínea con aceleración de 5 m/s^2 es:

Tiempo (s)	0	1	2	3	4	5
Distancia recorrida (m)	0	2,5	10	22,5	40	62,5

- 1. Describe en castellano, qué fenómeno estamos estudiando.
- 2. Representa gráficamente la situación descrita en la tabla horizontal, en papel milimetrado.
- 3. ¿Qué tipo de función es?
- 4. ¿Cuál crees que sería su ecuación?

SOLUCIÓN

- 1. Describe en castellano el fenómeno que estamos estudiando.
 - ¿Cómo varía la distancia recorrida con respecto del tiempo?
 - La variable independiente es el tiempo expresado en segundos y, la dependiente la distancia expresada en metros.

Es decir: distancia = f (tiempo)

$$s = k(t)$$

2. ¿Cuál es su gráfica?



3. ¿Qué tipo de función es?

Se trata de una parábola.

4. ¿Cuál crees que es su ecuación?

Tiempo (s)	0	1	2	3	4	5
Tiempo² (s²)	0	1	4	9	16	25
Distancia recorrida (m)	0	2,5	10	22,5	40	62,5
s/t²	0	2,5/1=2,5	10/4=2,5	22,5/9=2,5	40/16=2,5	62,5/25=2,5

Si el tiempo se duplica, la distancia recorrida se cuadruplica, y si el tiempo se triplica, la distancia recorrida se hace nueve veces mayor, etc. Es decir, la distancia recorrida y el tiempo guardan una proporcionalidad cuadrática.

$$s = k t^2$$
$$s = 2.5 t^2$$