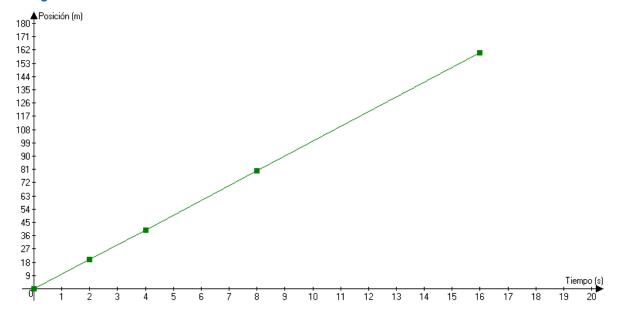
PROBLEMAS DE RELACIÓN ENTRE MAGNITUDES

1. Al estudiar el movimiento de un carrito, se han obtenido los siguientes resultados:

Tiempo (s)	0	2	4	8	16
Posición (m)	0	20	40	80	160

- a) Elabora una gráfica con los valores de la tabla.
- b) Obtén la expresión matemática que relaciona la posición, s con el tiempo, t.
- c) ¿Qué relación existe entre la posición y el tiempo?
- d) ¿Cuánto tiempo ha tardado el carrito en recorrer 100 m?


SOLUCIÓN

Describe en castellano el fenómeno que estamos estudiando.

- ¿Cómo varía la posición del carrito con respecto del tiempo?
- La variable independiente es el tiempo expresado en segundos y, la dependiente la posición expresada en metros. Es decir:

$$s = k(t)$$

¿Cuál es su gráfica?

¿Qué tipo de función es?

Se trata de una proporcionalidad directa entre la posición y el tiempo.

¿Cuál crees que es su ecuación?

Tiempo (s)	0	2	4	8	16
Posición (m)	0	20	40	80	160
s/t (m/s)		10	10	10	10

$$\frac{s}{t} = 10 \frac{m}{s}$$
 ; $s = 10 t$

2. Ponemos a calentar un cazo con una cierta cantidad de agua y, con un termómetro, medimos la temperatura cada minuto durante 10 minutos. Obtenemos la siguiente tabla de resultados:

Tiempo (min)	0	1	2	3	4	5	6	7	8	9
Temperatura (°C)	16	21	26	31	36	41	46	51	56	61

- a) Elabora una gráfica con los valores de la tabla.
- b) Describe el gráfico resultante.
- c) Obtén la ecuación.
- d) ¿Cuáles son las variables que medimos?
- e) A partir de los datos de la ecuación, deduce cual será la temperatura del agua al cabo de 12,5 min.

SOLUCIÓN

Describe en castellano el fenómeno que estamos estudiando.

- ¿Cómo varía la temperatura con respecto del tiempo?
- La variable independiente es el *tiempo* expresado en minutos y, la dependiente la *temperatura* expresada en °C. Es decir:

temperatura =
$$f(tiempo)$$

 $T = k(t)$

¿Cuál es su gráfica?

¿Qué tipo de función es?

Se trata de una proporcionalidad directa, en este caso una recta que no pasa por el origen de coordenadas.

¿Cuál crees que es su ecuación?

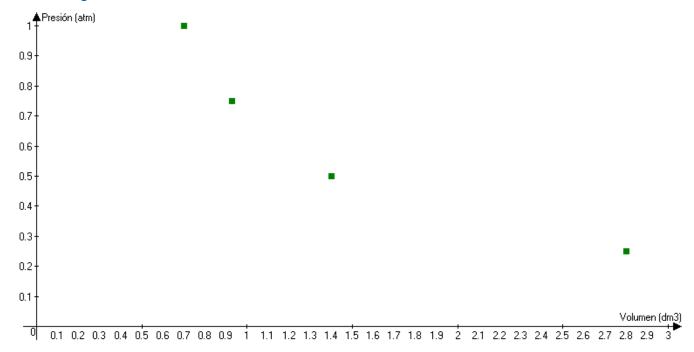
Tiempo (min)	0	1	2	3	4	5	6	7	8	9
Temperatura (°C)	16	21	26	31	36	41	46	51	56	61
$\Delta T/\Delta t$ (°C/min)		5	5	5	5	5	5	5	5	5

$$\frac{\Delta T}{\Delta t} = 5 \frac{{}^{\circ}C}{\min} \; ; \qquad \Delta T = 5 \; t + 16$$

3. Estudiamos el comportamiento de una masa gaseosa encerrada en un recipiente calibrado para medir volúmenes. El volumen se modifica al empujar el émbolo móvil que cierra el recipiente, y la presión se mide con un manómetro conectado en el interior. La temperatura permanece constante durante toda la experiencia. Los resultados son los siguientes:

Volumen (dm³)	2,80	1,40	0,93	0,70
Presión (atm)	0,250	0,500	0,750	1,00

- a) Representa gráficamente la relación P-V.
- b) ¿Qué tipo de gráfica se obtiene?
- c) ¿Cuál es su ecuación?
- d) ¿Qué volumen ocupa esta masa de gas a una presión de 1,25 atm?
- e) ¿A qué presión el volumen del gas sería de 3 dm³?


SOLUCIÓN

Describe en castellano el fenómeno que estamos estudiando.

- ¿Cómo varía la presión del gas con respecto al volumen que ocupa?
- La variable independiente es el volumen expresado en dm³ y, la dependiente la presión expresada en atm. Es decir:

$$presión = f(volumen)$$

 $P = k(V)$

¿Cuál es su gráfica?

¿Qué tipo de función es?

Se trata de una hipérbola.

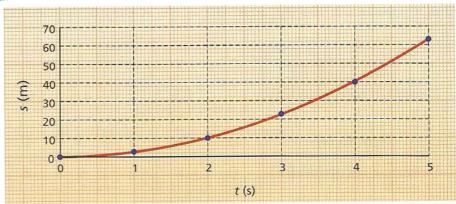
¿Cuál crees que es su ecuación?

Volumen (dm³)	2,80	1,40	0,93	0,70
Presión (atm)	0,250	0,500	0,750	1,00
P·V (atm dm³)	0,7	0,7	0,7	0,7

4. Al estudiar el movimiento de un móvil, se han obtenido los siguientes resultados en cuanto a la distancia recorrida y el tiempo empleado:

Tiempo (s)	0	2	4	6	8	10
Distancia (m)	0	4	16	36	64	100

- a) Elabora una gráfica con los valores de la tabla.
- b) ¿Qué relación existe entre la distancia y el tiempo?
- c) Obtén la expresión matemática que relaciona la distancia con el tiempo.
- d) ¿Cuánto tiempo ha tardado el carrito en recorrer 100 m?


SOLUCIÓN

Describe en castellano el fenómeno que estamos estudiando.

- ¿Cómo varía la distancia recorrida con respecto del tiempo?
- La variable independiente es el tiempo expresado en segundos y, la dependiente la distancia expresada en metros. Es decir:

$$s = k(t)$$

¿Cuál es su gráfica?

¿Qué tipo de función es?

Se trata de una parábola.

¿Cuál crees que es su ecuación?

Tiempo (s)	0	1	2	3	4	5
Tiempo² (s²)	0	1	4	9	16	25
Distancia recorrida (m)	0	2,5	10	22,5	40	62,5
s/t²	0	2,5/1=2,5	10/4=2,5	22,5/9=2,5	40/16=2,5	62,5/25=2,5

Si el tiempo se duplica, la distancia recorrida se cuadruplica, y si el tiempo se triplica, la distancia recorrida se hace nueve veces mayor, etc. Es decir, la distancia recorrida y el tiempo guardan una proporcionalidad cuadrática.

$$s = k t^2$$
$$s = 2.5 t^2$$